Arabic Arabic English English French French German German
dark

Amygdalin attenuated airway epithelium apoptosis, inflammation and epithelial-mesenchymal transition.

PMID: 

Int Arch Allergy Immunol. 2021 Aug 24:1-11. Epub 2021 Aug 24. PMID: 34428767

Abstract Title: 

Amygdalin Attenuates Airway Epithelium Apoptosis, Inflammation, and Epithelial-Mesenchymal Transition through Restraining the TLR4/NF-κB Signaling Pathway on LPS-Treated BEAS-2B Bronchial Epithelial Cells.

Abstract: 

BACKGROUND: Cough-variant asthma (CVA) is a special type of asthma, solely manifesting with coughing. Studies suggest that airway inflammation is associated with CVA pathogenesis. Amygdalin is found to have an anti-inflammatory potential, while how it affects CVA remains unexplored.METHODS: Cytotoxicity delivered by various concentrations of LPS and amygdalin on BEAS-2B cells was determined by Cell Counting Kit-8 assay. CVA in vitro models were established via LPS exposure on BEAS-2B cells which underwent amygdalin pretreatment. Cell apoptosis was determined by flow cytometry. Production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8, and mucin 5AC (MUC5AC) in BEAS-2B cells was measured by ELISA and qRT-PCR. Expressions of TLR4, E-cadherin, N-cadherin, α-smooth muscle actin (SMA), vimentin, phosphorylated-p65 (p-p65), p65, phosphorylated-IκBα (p-IκBα), and IκBα in BEAS-2B cells were measured by qRT-PCR or Western blot.RESULTS: LPS and high concentrations of amygdalin (over 600μg/mL) decreased BEAS-2B cell toxicity. Exposure to LPS inhibited toxicity, enhanced apoptosis; and promoted production of TNF-α, IL-6, IL-8, and MUC5AC, increased the levels of N-Cadherin, α-SMA, vimentin, p-p65, and p-IκBα, and decreased the levels of E-cadherin and IκBα in BEAS-2B cells. Amygdalin pretreatment counteracted the effects of LPS on BEAS-2B cells. Overexpressing TLR4 reversed amygdalin-exerted effects in LPS-exposed BEAS-2B cells.CONCLUSION: Amygdalin attenuated airway epithelium apoptosis, inflammation and epithelial-mesenchymal transition through restraining the TLR4/NF-κB signaling pathway in CVA.

read more

Read More

Total
0
Shares
Leave a Reply

Your email address will not be published. Required fields are marked *

Previous Post

How an anti-fungal medication can stop new blood vessel formation

Next Post

Metabolomics reveals the renoprotective effect of n-butanol extract and amygdalin extract from Amygdalus mongolica in rats with renal fibrosis.

Related Posts
Total
0
Share