Arabic Arabic English English French French German German

Medical electronic devices are facing a critical test

Healthcare instruments are competing for attention in today’s medical industry. In this guest post, Huei Sin, VP of general electronics measurement solutions and education at a leading technology company, looks at the challenges they face and what’s needed to successfully move forward.


The market for medical electronics today represents a comparatively small share of the nation’s nearly $200 billion in overall health expenses – about 5.2% in 2019. But the value it brings to the practice of medicine is disproportionately large and growing rapidly. As a result, the medical electronics industry is expected to see significant growth, propelled by the rising incidence of chronic disease coupled with greater use of medical imaging, monitoring and implantable devices – all combined with an increasingly elderly population.

Beyond that, the health benefits offered by various technologies included in the medical electronics category extend well past the hospital setting. Satellite centers, free-standing clinics, urgent care providers, doctors’ offices and patients’ homes are all becoming outfitted with monitors, analyzers, electronic devices and an assortment of machines to check vital signs and provide specialized care.  Collectively, they not only promise better, more timely care for patients, they hold the potential for replacing a significant share of the effort currently provided by overworked medical professionals.

Complex issues

This extraordinary growth has led to a series of complex technical issues affecting healthcare network infrastructure. That complexity reflects the assortment of sources and types of devices, as well as the heterogeneous network infrastructure that connects them to one another and to healthcare personnel.  Particularly in the case of large hospital systems with multiple owned and affiliated units, supporting the mix of physical and virtual networks, systems, data centers and applications, while maintaining visibility into the full network, is a huge challenge. Even with today’s high-performance delivery, analysis and management software applications in place, only limited visibility is available, and performance is often degraded. Part of the problem, of course, is the exploding volume of network traffic. But another is many applications are custom built and are incompatible with current monitoring methods.

In one case, a healthcare delivery system, which had expanded through acquisitions and the addition of new affiliates, inherited a complex heterogenous infrastructure that lacked visibility across the network. System administrators couldn’t monitor their data centers down to the server and application tiers.  Blind spots associated with the organization’s virtualized or private cloud infrastructure required IT to spend much more time and resources isolating, prioritizing and fixing problems.

In a similar situation, Cook Children’s Healthcare in Ft. Worth, Texas – a system with a range of problems including slow user experience, difficulty monitoring the network and inability to proactively identify potential performance issues – was seeking a way to realize their systems’ full potential. But as in the earlier example, the solution to diagnosing and eventually solving their performance problems stemmed from untangling their convergence of technology, policy and business issues.

A common concern affecting Cook, and many others that are seeing biosensors, wearables and mobile applications entering the healthcare landscape, is the data had been operating in its own silos, whether in a nursing station, a backend server or within the device itself. Having interoperable data is critical to improving the future of health care and to reducing costs. But, along with the shift from wired to wireless medical devices, there are multiple devices, using different protocols, sharing the same or adjacent radio frequencies. And when that happens, bizarre communication failures become commonplace.  Devices can experience interoperability issues with the infrastructure, resulting in communication errors during life-critical incidents. However, there isn’t a single protocol that covers the considerable operating demands of IoT devices that can carry both cybersecurity and privacy risks, as well as vulnerabilities that healthcare providers may not be aware of or, in many instances, even care about.

Emerging technology

Yet across the industry, regulatory bodies, such as the FDA, consider security a top concern. A smart medical device may need to interface with wi-fi, Bluetooth, ZigBee, and LTE before it can perform reliably. Leading companies are committed to staying ahead of the curve by integrating resources to ensure their products work robustly and securely in different scenarios. In addition, they’ll need to deal with added electromagnetic interference while complying with strict medical regulations.

Those tasks are about to become both easier and, in some respects, more complex as new technologies emerge and are assimilated into the healthcare arsenal. Among the most significant are 5G wireless networks, capable of handling orders of more data at very low latencies. At least in theory, as remote electronic monitoring and other IoMT devices continue to proliferate, that capability provides an ideal fit. Additional medical applications for 5G being explored include remote diagnosis, large file transfers and innovations in sensor development. Beyond that, new standards for massive machine-type communications, or mMTC, as well as others which apply to ultra-reliable low latency for all Internet of Machine Types, will help IT administrators sort out the babble of signals now crossing healthcare networks.

What can sometimes get lost in addressing the intricacies of healthcare’s electronic infrastructure is the whole point of having an efficient data network isn’t saving on expenses, it’s saving lives. The human costs of a failed hospital information system are incalculable. But the industry’s ability to succeed in the face of technical complexity isn’t something that can be taken on faith; it requires a robust protocol of testing that involves hardware, communication solutions, battery life, security and more. Each of these needs to be tested separately, as well as together, to ensure they can withstand the rigors of the environment in which they will need to operate. Plus, the personnel assigned to their support must be able to monitor the devices and discover any potential failures before they happen.

To achieve that, test equipment and software needs to evolve in close collaboration with the industries whose instruments it covers, even including a cloud-based test solution-as-a-service. That strategy will benefit the healthcare industry, as well as the test and measurement industry, both of which can gain greater insight and credibility into human health and the market demands that drive their offerings.

Huei Sin is the VP of the General Electronics Measurement Solutions and VP of Keysight Education at Keysight Technologies Inc., a leading technology company that helps enterprises, service providers and governments accelerate innovation to connect and secure the world.

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Previous Post

Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells.

Next Post

Quest and LabCorp Face a New Challenger in Lab-Testing Market