Arabic Arabic English English French French German German
dark

Severe acute respiratory syndrome coronavirus-2 inactivation activity of the polyphenol-rich tea leaf extract.

PMID: 

Molecules. 2021 Aug 8 ;26(16). Epub 2021 Aug 8. PMID: 34443390

Abstract Title: 

Severe Acute Respiratory Syndrome Coronavirus-2 Inactivation Activity of the Polyphenol-Rich Tea Leaf Extract with Concentrated Theaflavins and Other Virucidal Catechins.

Abstract: 

Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is producing a large number of infections and deaths globally, the development of supportive and auxiliary treatments is attracting increasing attention. Here, we evaluated SARS-CoV-2-inactivation activity of the polyphenol-rich tea leaf extract TY-1 containing concentrated theaflavins and other virucidal catechins. The TY-1 was mixed with SARS-CoV-2 solution, and its virucidal activity was evaluated. To evaluate the inhibition activity of TY-1 in SARS-CoV-2 infection, TY-1 was co-added with SARS-CoV-2 into cell culture media. After 1 h of incubation, the cell culture medium was replaced, and the cells were further incubated in the absence of TY-1. The viral titers were then evaluated. To evaluate the impacts of TY-1 on viral proteins and genome, TY-1-treated SARS-CoV-2 structural proteins and viral RNA were analyzed using western blotting and real-time RT-PCR, respectively. TY-1 showed time- and concentration-dependent virucidal activity. TY-1 inhibited SARS-CoV-2 infection of cells. The results of western blotting and real-time RT-PCR suggested that TY-1 induced structural change in the S2 subunit of the S protein and viral genome destruction, respectively. Our findings provided basic insights in vitro into the possible value of TY-1 as a virucidal agent, which could enhance the current SARS-CoV-2 control measures.

read more

Read More

Total
0
Shares
Leave a Reply

Your email address will not be published. Required fields are marked *

Previous Post

Wogonin induces cell cycle arrest and apoptosis of hepatocellular carcinoma cells.

Next Post

Imprivata’s digital identity solutions now available on Microsoft Azure

Related Posts
Total
0
Share